Triple Integrals

If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint_B f(x,y,z) \, dV = \int_a^b \int_c^d \int_r^s f(x,y,z) \, dx \, dy \, dz$$

We can iterate in any order we want.

All properties of double integrals have analogues for triple integrals:

A continuous function is integrable over a closed, bounded domain.

$$\iiint_D dV = \text{Volume of } D$$
Triple integrals over more general domains can be defined similarly. For example, if

\[E = \{ (x,y,z) \mid (x,y) \in P, \quad u_1(x,y) \leq z \leq u_2(x,y) \} \]

where \(P \) is the projection of \(E \) onto the \(xy \)-plane,

\[\iiint_E f(x,y,z) \, dV = \iiint_P \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \right] \, dA \]

Ex: \[\iiint_E z \, dV \]

\(E \) is the solid tetrahedron bounded by the four planes \(x=0, y=0, z=0 \) and \(x+y+z=1 \).

\[\iiint_E z \, dV = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} z \, dz \, dy \, dx \]

Ex: \[\iiint_E x \, dV \]

\(E \) is bounded by the paraboloid \(z = 4y^2 + 4z^2 \) and the plane \(x=4 \).

\[z \]
\[\iiint_E x \, dx \, dy \, dz = \frac{1}{2} \iiint_D \left[4 - (4y^2 + 4z^2) \right] \, dA \]

\[D : 4y^2 + 4z^2 < 4 \]
\[y^2 + z^2 \leq 1 \]
\[y = r \cos \theta \]
\[z = r \sin \theta \]

\[2\pi \left(\int_0^1 \int_0^1 (1 - r^4) r^2 \, dr \right) \, d\theta \]

\[= 8 \int_0^1 \int_0^1 (1 - r^4) r^2 \, dr \, d\theta \]

\[= 0 \]

Ex: \[\iiint_E z \, dV \]
\[E \text{ is bounded by the cylinder } y^2 + z^2 = 9 \]
\[\text{and the planes } x = 0, y = 3x, \text{ and } z = 0 \]
\[\text{in the first octant.} \]
Ex: Find the volume of the solid bounded by the cylinder $y = x^2$ and the planes $z = 0$, $z = 4$, and $y = 9$.

$$V = \iiint_E dV = \iiint_0^{3x^2} 0^9 dxdzdy$$